Phytochemicals, Nutritional Value, Antioxidant, and Anticoagulant Activity of Lactuca sativa L. Leaves and Stems

  • Hanin Nafed Mughrbi University of Tripoli https://orcid.org/0000-0002-9855-2465
  • Abdurazag Abdussalam Auzi University of Tripoli
  • Hamza Maghrbi National Centre for Diabetes and Endocrinology
Keywords: Lactuca sativa, DPPH, Activated Partial Thromboplastin Time, Anticoagulants, Prothrombin Time

Abstract

The main ingredient in the daily salad dish is the leaves of Lactuca sativa, while the stems are usually discarded and not eaten. This study was conducted to compare the stems and leaves of two selected L. sativa varieties (L. sativa var. longifolia L. and L. sativa var. capitata L.) related to the preliminary phytochemical investigation, nutrient content, DPPH assay, and in vitro anticoagulant activity by determination of prothrombin time (PT) and activated partial thromboplastin time (aPTT). The findings revealed almost the same phytoconstituents in the leaves and stems of each variety, such as terpenoids, flavonoids, coumarins, and others. Exceptionally, tannins have only been detected in the leaves. Compared to the stems, the leaves of both varieties showed statistically significantly higher levels of raw protein and raw fat. For the DPPH assay, the leaves of both varieties have a statistically significantly higher antioxidant activity than the stems. The leaves and stem extract of the two selected varieties showed a significant prolongation of PT (P <0.05 vs. NS= 12:30 s). On the other hand, the aPTT test showed a significant increase in aPTT (P <0.05 vs. NS = 32:44 s) in the stem extract of both varieties, whereas there was no statistically significant increase in aPTT in the leaves of both varieties. Both parts of each variety have a diversity of phytochemicals and nutrients. The leaves of both varieties have a higher antioxidant activity than the stems. While the stems had higher anticoagulant activity than the leaves.

Downloads

Download data is not yet available.

References

Alavi, S.A. (1983). Flora of Libya: Asteraceae, Volume 107. 402-403. Tripoli, Libya: Department of Botany, Al Faateh University.
Araruna, K. & Carlos, B. (2010). Anti-inflammatory activities of triterpene lactones from Lactuca sativa. Phytopharmacology, 1(1), 1-6.
Ashwini, U. & Asha, S. (2017). A Preliminary Novel Findings on Invitro Anti-Coagulant Activity of Acalypha Indica Linn Leaf Extracts. International Journal of Pharmaceutical and Clinical Research, 9(5), 425-429. doi:10.25258/ijpcr.v9i5.8607
Association of Official Agricultural Chemists. (2000). Official Methods of Analysis of AOAC International, 16th edition. Virginia, US: AOAC International.
Association of Official Agricultural Chemists. (1990). Official Methods of Analysis of AOAC International, 15th edition. Virginia, US: AOAC International.
Banu, K.S. & Cathrine, L. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4), 25-32.
Bhandary, S.K., Kumari, S.N., Bhat, V.S., Sharmila, K.P., & Bekal, M.P. (2012). Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. Nitte University Journal of Health Science, 2(4), 34-38. doi:10.1055/s-0040-1703609
Bhat, R.S. & Al-Daihan, S. (2014). Phytochemical constituents and antibacterial activity of some green leafy vegetables. Asian Pacific Journal of Tropical Biomedicine, 4(3), 189-193. doi:10.1016/S2221-1691(14)60230-6
Buttar, H.S., Li, T., & Ravi, N. (2005). Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Experimental and Clinical Cardiology, 10(4), 229-249.
Chen, H., Jin, M., Wang, Y.F., Wang, Y.Q., Meng, L., Li, R., Wang, J.P., Kong, Y., & Wei, J.F. (2014). Effect of Toona microcarpa Harms Leaf Extract on the Coagulation System. BioMed Research International, 2014, 615363. doi:10.1155/2014/615363
Cordier, W., Cromarty, A.D., Botha, E., & Steenkamp, V. (2012). Effects of selected South African plant extracts on haemolysis and coagulation. Human and Experimental Toxicology, 31(3), 250-257. doi:10.1177/0960327111398675
Cordier, W. & Steenkamp, V. (2012). Herbal remedies affecting coagulation: a review. Pharmaceutical Biology, 50(4), 443-452. doi:10.3109/13880209.2011.611145
Duric, K., Besovic, E.E.K., Niksic, H., Muratovic, S., & Sofic, E. (2015). Anticoagulant activity of some Artemisia dracunculus leaf extracts. Bosnian Journal of Basic Medical Sciences, 15(2), 9-14. doi:10.17305/bjbms.2015.384
Edeoga, H.O., Okwu, D.E., & Mbaebie, B.O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685-688. doi:10.5897/AJB2005.000-3127
Evans, W. (2009). Trease and Evans' Pharmacognosy, 16th Edition. Edinburgh, UK: Elsevier.
Fujihara, S., Kasuga, A., & Aoyagi, Y. (2001). Nitrogen‐to‐Protein Conversion Factors for Common Vegetables in Japan. Journal of Food Science, 66(3), 412-415. doi:10.1111/j.1365-2621.2001.tb16119.x
Gan, Y.Z. & Azrina, A. (2016). Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. International Food Research Journal, 23(6), 2357-2362.
Han, Y.F., Cao, G.X., Gao, X.J., & Xia, M. (2010). Isolation and characterisation of the sesquiterpene lactones from Lactuca sativa L var. anagustata. Food Chemistry, 120(4), 1083-1088. doi:10.1016/j.foodchem.2009.11.056
Ismail, H., Dilshad, E., Waheed, M.T., & Mirza, B. (2017). Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats. Applied Biochemistry and Biotechnology, 181, 1179-1198. doi:10.1007/s12010-016-2277-3
Ismail, H. & Mirza, B. (2015). Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Complementary Medicine and Therapies, 15, 199. doi:10.1186/s12906-015-0742-0
Jesonbabu, J.N., Spandana, M., Reddy, M.S, & Lakshmi, K.A. (2012). A bioactive compound from piper betel with anticoagulant activity. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 109-112.
Karaki, N., Sebaaly, C., Chahine, N., Faour, T., Zinchenko, A., Rachid, S., & Kanaan, H. (2013). The antioxidant and anticoagulant activities of polysaccharides isolated from the brown algae Dictyopteris polypodioides growing on the Lebanese coast. Journal of Applied Pharmaceutical Science, 3(2), 43-51. doi:10.7324/JAPS.2013.30208
Kumar, S., Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7, 560. doi:10.1186/1756-0500-7-560
Kumarasamy, Y., Byres, M., Cox, P.J., Jaspars, M., Nahar, L., & Sarker, S.D. (2007). Screening seeds of some Scottish plants for free radical scavenging activity. Phytotherapy Research, 21(7), 615-621. doi:10.1002/ptr.2129
Liu, X., Ardo, S., Bunning, M., Parry, J., Zhou, K., Stushnoff, C., Stoniker, F., Yu, L., & Kendall, P. (2007). Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT – Food Science and Technology, 40(3), 552-557. doi:10.1016/j.lwt.2005.09.007
Llorach, R., Martínez-Sánchez, A., Tomás-Barberán, F.A., Gil, M.A., & Ferreres, F. (2008). Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chemistry, 108(3), 1028-1038. doi:10.1016/j.foodchem.2007.11.032
Michalska, K., Stojakowska, A., Malarz, J., Doležalová, I., Lebedam A., & Kisiel, W. (2009). Systematic implications of sesquiterpene lactones in Lactuca species. Biochemical Systematics and Ecology, 37(3), 174-179. doi:10.1016/j.bse.2009.02.001
Mir, M.A., Parihar, K., Tabasum, U., & Kumari, E. (2016). Estimation of alkaloid, saponin and flavonoid, content in various extracts of Crocus sativa. Journal of Medicinal Plants Studies, 4(5), 171-174.
Moghadamtousi, S.Z., Goh, B.H., Chan, C.K., Shabab, T., & Kadir, H.A. (2013). Biological Activities and Phytochemicals of Swietenia macrophylla King. Molecules, 18(9), 10465-10483. doi:10.3390/molecules180910465
Morsy, N. (2014). Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry, 13(1), 7-21. doi:10.3233/MGC-130117
Mughrbi, H.N. & Auzi, A.A. (2020). Lactuca sativa Stems as the Source of Bioactive Compounds as well as the Leaves. Journal of Pharmacy and Pharmacology, 8(5), 143-150. doi:10.17265/2328-2150/2020.05.003
Najafabad, A.M. & Jamei, R. (2014). Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L.) in both fresh and dried samples. Avicenna Journal of Phytomedicine, 4(5), 343-353.
Ngbede, J., Yakubu, R.A., & Nyam, D.A. (2008). Phytochemical Screening for Active Compounds in Canarium schweinfurthii (Atile) Leaves from Jos North, Plateau State, Nigeria. Research Journal of Biological Sciences, 3(9), 1076-1078.
Nie, C., Zhu, P., Ma, S., Wang, M., & Hu, Y. (2018). Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohydrate Polymers, 188, 236-242. doi:10.1016/j.carbpol.2018.02.009
Nie, C., Zhu, P., Wang, M., Ma, S., & Wei, Z. (2017). Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. International Journal of Biological Macromolecules, 105(1), 912-923. doi:10.1016/j.ijbiomac.2017.07.125
Palta, S., Saroa, R., & Palta, A. (2014). Overview of the coagulation system. Indian Journal of Anaesthesia, 58(5), 515-523. doi:10.4103/0019-5049.144643
Ribas-Agusti, A., Gratacós-Cubarsí, M., Sárraga, C., García-Regueiro, J.A., & Castellari, M. (2011). Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochemical Analysis, 22(6), 555-563. doi:10.1002/pca.1318
Rodrigues, J.A.G., Vanderlei, E.D.S.O., Bessa, E.F., Magalhães, F.D.A., de Paula, R.C.M., Lima, V., & Benevides, N.M.B. (2011). Anticoagulant activity of a sulfated polysaccharide isolated from the green seaweed Caulerpa cupressoides. Brazilian Archives of Biology and Technology, 54(4), 691-700. doi:10.1590/S1516-89132011000400007
Singh, D., Singh, P., Gupta, A., Solanki, S., Sharma, E., & Nema, R. (2012). Qualitative Estimation of the Presence of Bioactive Compound in Centella Asiatica: An Important Medicinal Plant. International Journal of Life Science and Medical Research, 2(1), 5-7. doi:10.5963/LSMR0201002
Sung, S.H., Kim, K.H., Jeon, B.T., Cheong, S.H., Park, J.H., Kim, D.H., Kweon, H.J., & Moon, S.H. (2012). Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. Journal of Medicinal Plants Research, 6(15), 3072-3079. doi:10.5897/JMPR11.1575
Triplett, D.A. (2000). Coagulation and bleeding disorders: review and update. Clinical Chemistry, 46(8 pt 2), 1260-1269. doi:10.1093/clinchem/46.8.1260
Wheeler, R.M., Mackowiak, C.L., Sager, J.C., Yorio, N.C., Knott, W.M., & Berry, W.L. (1994). Growth and gas exchange by lettuce stands in a closed, controlled environment. Journal of the American Society for Horticultural Science, 119(3), 610-615.
Zdravković, J.M., Aćamović-Djoković, G.S., Mladenović, J.D., Pavlović, R.M., & Zdravković, M.S. (2014). Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce. Hemijska industrija, 68(2), 193-198. doi:10.2298/HEMIND130222043Z
Published
2020-08-31
How to Cite
Mughrbi, H. N., Auzi, A. A., & Maghrbi, H. (2020). Phytochemicals, Nutritional Value, Antioxidant, and Anticoagulant Activity of Lactuca sativa L. Leaves and Stems. Borneo Journal of Pharmacy, 3(3), 152-161. https://doi.org/10.33084/bjop.v3i3.1394
Section
Pharmacognosy-Phytochemistry