In Silico Anti-Inflammation Prediction of Glycyrrhiza Extracts Against Covid-19

Authors

DOI:

https://doi.org/10.33084/jmd.v1i2.3154

Keywords:

Glycyrrhiza, Licorice, Molecular docking, Anti-inflammation, COVID-19

Abstract

Due to its anti-inflammation effect, Glycyrrhiza extract is one of the natural extracts that may potentially combat coronavirus disease in 2019 (COVID-19). In the current article, we evaluate in silico (molecular docking) properties of active compounds available in Glycyrrhiza, native to Western Asia, North Africa, and Southern Europe, and compare its anti-inflammation effect with remdesivir as positive compounds based on molecular docking characteristics. The main active compounds were selected based on their significant roles in the pharmacological effects of Glycyrrhiza. The results obtained in this study demonstrated that most of the studied main compounds interacted stronger than selected remdesivir to inhibit the spike protein in COVID-19. The combined scores (binding affinity and drug-likeness properties of the ligand, demonstrated to be the potentially possible COVID-19 inhibitor compared with positive control. The active site analysis of the interactions also showed that Glycyrrhiza extract containing active compounds might have therapeutic effects against COVID-19.

Downloads

Download data is not yet available.

References

1. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):224. doi:10.1186/s12931-020-01479-w
2. Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res. 2020. 188:109819. doi:10.1016/j.envres.2020.109819
3. Reddy OS, Lai WF. Tackling COVID-19 Using Remdesivir and Favipiravir as Therapeutic Options. Chembiochem. 2021;22(6):939-48. doi:10.1002/cbic.202000595
4. Nguyen TT, Pathirana PN, Nguyen T, Nguyen QVC, Bhatti A, Nguyen DC, et al. Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci Rep. 2021;11(1):3487. doi:10.1038/s41598-021-83105-3
5. Shang J, Han N, Chen Z, Peng Y, Li L, Zhou H, et al. Compositional diversity and evolutionary pattern of coronavirus accessory proteins. Brief Bioinform. 2021;22(2):1267-78. doi:10.1093/bib/bbaa262
6. Li H, Liu SM, YU XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. doi:10.1016/j.ijantimicag.2020.105951
7. Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020;12(3):e7423. doi:10.7759/cureus.7423
8. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729-34. doi:10.1016/j.cmi.2020.03.026
9. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. doi:10.1038/s41586-020-2180-5
10. Sachdeva C, Wadhwa A, Kumari A, Hussain F, Jha P, Kaushik NK. In silico Potential of Approved Antimalarial Drugs for Repurposing Against COVID-19. OMICS. 2020;24(10):568-80. doi:10.1089/omi.2020.0071
11. Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev. 2020;167:47-65. doi:10.1016/j.addr.2020.11.007
12. Nazari MV, Nazari M, Arabani S, Nazari MV. Anti-Inflammation Prediction of Orthosiphon Stamineus Extract Against Covid19 (In Silico Study). Int J Eng Technol Sci. 2021;8(1):14-8. doi:10.15282/ijets.8.1.2021.1002
13. Hoang HT, Moon JY, Lee YC. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics. 2021;8(4):106. doi:10.3390/cosmetics8040106
14. Faccio G. Plant Complexity and Cosmetic Innovation. iScience. 2020;23(8):101358. doi:10.1016/j.isci.2020.101358
15. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Belén LH, Kaur R, Kregiel D, et al. Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. Oxid Med Cell Longev. 2021;2021:7571132. doi:10.1155/2021/7571132
16. Ciganović P, Jakimiuk K, Tomczyk M, Končić MZ. Glycerolic Licorice Extracts as Active Cosmeceutical Ingredients: Extraction Optimization, Chemical Characterization, and Biological Activity. Antioxidants. 2019;8(10):445. doi:10.3390/antiox8100445
17. Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, et al. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. Am J Chin Med. 2020;48(1):17-45. doi:10.1142/s0192415x20500020
18. Ashraf K, Sultan S, Adam A. Orthosiphon stamineus Benth. is an Outstanding Food Medicine: Review of Phytochemical and Pharmacological Activities. J Pharm Bioallied Sci. 2018;10(3):109-118. doi:10.4103/jpbs.jpbs_253_17
19. Zhang Y, Xu Y, Zhang L, Chen Y, Wu T, Liu R, et al. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res Int. 2022;153:110945. doi:10.1016/j.foodres.2022.110945
20. Habib A, Nazari MV, Iqbal MA, Bhatti HN, Ahmed MBK, Majid AMSA. Unsymmetrically substituted benzimidazolium based Silver(I)-N-heterocyclic carbene complexes: Synthesis, characterization and in vitro anticancer study against human breast cancer and colon cancer. J Saudi Chem Soc. 2019;23(7):795-808. doi:10.1016/j.jscs.2019.03.002
21. Badroon N, Majid NA, Al-Suede FSR, Nazari MV, Giribabu N, Majid AMSA, et al. Cardamonin Exerts Antitumor Effect on Human Hepatocellular Carcinoma Xenografts in Athymic Nude Mice through Inhibiting NF-κβ Pathway. Biomedicines. 2020;8(12):586. doi:10.3390/biomedicines8120586
22. Mojiri A, Zhou JL, Nazari MV, Rezania S, Farraji H, Vakili M. Biochar enhanced the performance of microalgae/bacteria consortium for insecticides removal from synthetic wastewater. Process Saf Environ Prot. 2022;157:284-96. doi:10.1016/j.psep.2021.11.012
23. Erol M, Celik I, Kuyucuklu G. Synthesis, Molecular Docking, Molecular Dynamics, DFT and Antimicrobial Activity Studies of 5-substituted-2-(p-methylphenyl)benzoxazole Derivatives. J Mol Struct. 2021;1234:130151. doi:10.1016/j.molstruc.2021.130151
24. Li J, Xu D, Wang L, Zhang M, Zhang G, Li E, et al. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Molecules. 2021;26(20):6090. doi:10.3390/molecules26206090
25. Diomede L, Beeg M, Gamba A, Fumagalli O, Gobbi M, Salmona M. Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Biomolecules. 2021;11(6):855. doi:10.3390/biom11060855
26. Sinha SK, Prasad SK, Islam MA, Gurav SS, Patil RB, AlFaris NA. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study. J Biomol Struct Dyn. 2021;39(13):4686-700. doi:10.1080/07391102.2020.1779132
27. Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc. 2022;49:2999-3007. doi:10.1016/j.matpr.2020.10.055
28. van de Sand L, Bormann M, Alt M, Schipper L, Heilingloh CS, Steinmann E, et al. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses. 2021;13(4):609. doi:10.3390/v13040609

Downloads

Published

2021-12-30

How to Cite

1.
Nazari M. In Silico Anti-Inflammation Prediction of Glycyrrhiza Extracts Against Covid-19. J Mol Docking [Internet]. 2021Dec.30 [cited 2024Apr.23];1(2):84-90. Available from: https://journal.umpr.ac.id/index.php/jmd/article/view/3154

Issue

Section

Original Research Articles